Now, my progress. Initially, I had hoped to code my own JavaScript Prolog Interpreter, but decided to first look at what already exists out there. I decided, after some quick searching, to base my code around jsProlog, a project developed by Jan (no last name given) at the University of Bristol (check it out at http://ioctl.org/logic/prolog-latest). I took her code, which is tailored to the layout of her web page, removed references to specific divs, etc., and wrapped it in an object that I subsequently named the PrologEngine object. Thus far I can read in a file containing Prolog statements on the fly and interpret them, storing them in a database contained within the PrologEngine object. Querying is still a bit buggy (read: it's not working at all yet), but I hope to have those bugs worked out by the end of the week.
I have spent a good stretch of time thinking about this project. Here are some of those thoughts:
From the get-go, I want this project to ultimately serve as a simulation of the human brain. This means incorporating a few specific things that are difficult to code.
We're talking about things like:
Memories
How does the brain remember things? If you think about it, we store enormous chunks of data as single, consistent memories. We learn new things when we revisit our memories. For example, I have met a person and become thorough acquaintances with him, only to realize a long time afterward that I had actually met him years before, in a completely different context. Now, I realized this by reviewing my memories, essentially, just letting my mind wander over old thoughts and putting pieces and images together.
This is one of the absolutely incredible things about the human mind. We remember almost every single little detail about our experiences. This is a massive amount of data, and our mental processors aren't quite equipped to handle all of it at once. Therefore, we simply store it away and wait until ma more convenient time. Whenever it isn't actively doing something, and often even when it is, our mind is constantly processing the data it has stored away. Large amounts of data we have stored is never actually processed at all. This brings us to the second point.
Learning
This is a two-fold issue. First, how does the brain know what connections to make? Second, how does it know what data is important enough to be immediately processed, and how does it know what to ignore for the moment and push to the back to be processed later, or perhaps not at all? We know the brain makes these distinctions. Here is an example: when we look at a painting, we tend to pick up on the major points first. Let's examine Henry Tanner's The Banjo Lesson as a simple example.
Brief aside: I just want to say that I really love this painting. I first saw it in a fantastic post by David Byron over at the blog Barouque Potion. His stuff is fantastic; check it out if you have free time.
Now, I'm betting that when you first looked at this painting, you immediately noticed a few major things:
- The man
- The boy
- The banjo
Whether because of an instinctual communal bond, a tendency to notice the most familiar things or the things that could most directly affect us first, or just because they're the focus of the photo, you noticed the people first. The banjo came next most likely as an observation about what the humans are doing, and as a connection to the title of the painting.
However, it takes some detailed observation and studying to notice some of the following things and connections:
- The ruscksack on the floor
- The paintings on the wall
- The ceramic pitcher and saucer on the counter
- The metal pitcher and pot on the fireplace mantle
- The physical parallelism between the two previous items
- The metaphorical parallelism between these two pairs of utensils and the man-boy pair
The list could go on, but the point is apparent. We notice some things only after extended processing. How do we programmatically decide, though, what to consider first? For example, I would like to be able to supply a topic and be able to search the web within a minute or so and learn as much as possible about the topic. But how do you decide what information on the page is worth looking at?
Another point that can not be lost here is this: Even once the right sentences have been chosen, how do we make connections? How does the computer record facts, rules, and observations? Suppose you were to tell me, "The American economy is a very poor condition." I could easily convert this into a Prolog-style First-Order Logic (FOL) statement as follows:
poor-economy(america).
But how does the computer determine this? How does it select a consistent format? Perhaps a better choice would be:
bad(american-economy).
This is a little more basic and perhaps universally understandable and useful for the computer. However, it takes a little more natural language processing, understanding that "in poor condition" equates to "bad", etc. And there are plenty of other options for how to represent this statement. Our brain goes through a very complicated process when understanding statements like these.
And now we get to perhaps the biggest obstacle of all:
Original Thought
For a long time this has been the thing that I considered unconquerable. A computer is programmed by a person to follow very specific procedural paths. We can squabble over imperative vs. declarative programming, Von Neumann vs. functional vs. object-oriented programming languages, etc., but ultimately it's all compiled or interpreted down to procedures, top-to-bottom operations written in binary machine language. It's all got to be put there by an intelligent human. How is it possible that a machine programmed by a human could ever end up with code that the human didn't put there? How could it ever perform an action or make an observation that it wasn't specifically told to?
This question is something that was pondered by some of the greats in Computer Science history, men like Alan Turing, over sixty years ago, when things like the internet were not yet even thought of. Incredibly, it is still considered an open question in Computer Science, i.e. a question which has not yet been answered. We don't know yet whether the human brain is more powerful (computationally speaking) than the Turing Machine model.
After all, what is the brain but ultimately an enormous bundle of circuits, performing procedural tasks very, very quickly?
I would love to build a JavaScript "machine" that passes the Turing test. That would be amazing.
But there's a long way to go first.
One step at a time.
The next few steps along the way:
- Finish PrologEngine.js
- Begin determining how to represent data in a universally consistent way
- Begin planning how to parse blocks of text for data
You seek for knowledge and wisdom, as I once did; and I ardently hope that the gratification of your wishes may not be a serpent to sting you, as mine has been. - Frankenstein, Mary Shelley
No comments:
Post a Comment